Pravděpodobnostní grafické modely

Tento kurz je určen pro zájemce o porozumění Bayesovským sítím a pravděpodobnostnímu programování.

Popis kurzu:

Teoretická příprava v první části kurzu bude směřovat k praktickému příkladu modelování témat pomocí Latent Dirichlet Allocation a jejímu neparametrickému rozšíření včetně odhadu hyperparametrů. Po absolvování kurzu bude účastník schopen navrhovat a implementovat vlastní jednoduché Bayesovské sítě pro různé problémy.

Požadované znalosti:
  • Základní znalost programování v Pythonu
  • Středoškolské znalosti lineární algebry, matematické analýzy a teorie pravděpodobnosti. Bude předpokládáno základní porozumění pojmům jako vektor, matice, vektorový prostor, pravděpodobnost, podmíněná pravděpodobnost, nezávislost náhodných jevů a znalost násobení matic a derivace funkcí.
Obsah kurzu:
  • Bayesovské sítě
  • Grafická reprezentace modelu
  • Generativní vs. diskriminativní modely
  • Statistická inference v Bayesovských sítích
    • Variational inference
    • Sampling
      • Rejection sampling
      • Markov Chain Monte Carlo
      • Metropolis-Hastings sampling
      • Gibbs sampling
  • Pravděpodobnostní rozdělení
    • Binomické a multinomické rozdělení
    • Beta a Dirichletovo rozdělení
    • Gamma rozdělení
  • Pravděpodobnostní programovací jazyky
  • Praktický příklad na modelování témat
    • Latent Semantic Analysis
    • Probabilistic Latent Semantic Analysis
    • Latent Dirichlet Allocation
  • Neparametrické modely
    • Dirichlet process
    • Chinese restaurant process a Stick breaking process
    • Non-parametric LDA
  • Odhad hyperparametrů
úroveň

pokročilý

jazyk
cz en

délka kurzu

1 den

Vyberte termín a místo konání
Kdykoliv cz
Prezenčně
Praha
Kdykoliv en
Prezenčně
Praha
Počet účastníků

Potřebujete poradit?

+420 499 810 606
Nevybrali jste si? nevadí!

Připravíme vám školení na míru