Úvod do strojového učení

Jedná se o úvodní kurz pro začátečníky, kteří se strojovým učením nemají žádné zkušenosti a chtějí udělat první kroky k jeho praktickému používání.

Popis kurzu:

Účastníci se dozvědí, co je to strojové učení, jaké typy strojového učení se v praxi nejčastěji používají a jak jednotlivé algoritmy fungují. Nebudeme se zabývat přesným matematickým popisem, ale spíše intuitivním porozuměním, které je nezbytné pro efektivní používání a správnou volbu různých nástrojů a knihoven. Velkou pozornost věnujeme způsobům vyhodnocení natrénovaných modelů, problémům s přeučováním, přípravě dat a praktickým poznatkům, které se ve škole nedozvíte.

Každý účastník si s využitím open source knihoven prakticky vyzkouší naprogramovat jednoduché algoritmy pro klasifikaci, regresi a detekci anomálií.

Požadované znalosti:
  • Základní znalost programování v Pythonu
  • Středoškolské znalosti lineární algebry, matematické analýzy a teorie pravděpodobnosti. Bude předpokládáno základní porozumění pojmům jako vektor, matice, vektorový prostor, pravděpodobnost, podmíněná pravděpodobnost, nezávislost náhodných jevů a znalost násobení matic a derivace funkcí.
Obsah kurzu:

Den 1.

  • Co je to strojové učení
  • Typy strojového učení (klasifikace, regrese, řazení, reinforcement learning, clustering, detekce anomálií, doporučování, optimalizace)
  • Příprava data (rozdělení datových množin, vyváženost dat, šumy v datech, normalizace a standardizace atributů, rozpoznání přeučování a obrana proti němu)
  • Evaluace modelů pro klasifikace (accuracy, precision, recall, matice záměn, ROC křivka, AUC)
  • Základní algoritmy pro klasifikaci (baseline modely, naivní bayesovský klasifikátor, logistická regrese, Support Vector Machines, rozhodovací stromy, ensemble metody)
  • Rychlotutoriál scikit learn (načítání a transformace dat, trénování modelů a predikce, pipelines, evaluace)
  • Praktická úloha na klasifikaci
  • Základní algoritmy pro regresi (analytické metody, gradient descent, SVR, regresní stromy)
  • Evaluace regresních modelů (mean squared error, absolute squared error)
  • Praktická úloha na regresi

Den 2.

  • Základní algoritmy pro shlukování (K-means, hierarchické shlukování, metody pro určení počtu shluků)
  • Praktická úloha na shlukování
  • Úvod do neuronových sítí (proč jsou populární, výhody/nevýhody, perceptron)
  • Nejpoužívanější aktivační funkce (Sigmoid, Linear, Tanh, Relu, Softmax)
  • Vícevrstvé sítě (Algoritmus zpětné propagace chyby a stochastic gradient descent, konvoluce, pooling a regularizace)
  • Trénování neuronových sítí (epocha, iterace, batch learning)
  • Rychlotutoriál Keras (instalace TensorFlow + Keras, návrh sekvenčního modelu, optimalizátory a trénování, způsob práce s daty)
  • Praktické úlohy na klasifikaci a regresi pomocí neuronových sítí
úroveň

základní

jazyk
cz en

délka kurzu

2 dny

Vyberte termín a místo konání
16. - 17. 2. 2026 cz
Prezenčně
Praha
16. - 17. 2. 2026 cz
Online
Online
Kdykoliv cz
Prezenčně
Praha
Kdykoliv en
Prezenčně
Praha
Počet účastníků

Potřebujete poradit?

+420 499 810 606
Nevybrali jste si? nevadí!

Připravíme vám školení na míru